Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.506
Filtrar
1.
PLoS One ; 19(4): e0298139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564528

RESUMO

Bacterial communities directly influence ecological processes in the ocean, and depth has a major influence due to the changeover in primary energy sources between the sunlit photic zone and dark ocean. Here, we examine the abundance and diversity of bacteria in Monterey Bay depth profiles collected from the surface to just above the sediments (e.g., 2000 m). Bacterial abundance in these Pacific Ocean samples decreased by >1 order of magnitude, from 1.22 ±0.69 ×106 cells ml-1 in the variable photic zone to 1.44 ± 0.25 ×105 and 6.71 ± 1.23 ×104 cells ml-1 in the mesopelagic and bathypelagic, respectively. V1-V2 16S rRNA gene profiling showed diversity increased sharply between the photic and mesopelagic zones. Weighted Gene Correlation Network Analysis clustered co-occurring bacterial amplicon sequence variants (ASVs) into seven subnetwork modules, of which five strongly correlated with depth-related factors. Within surface-associated modules there was a clear distinction between a 'copiotrophic' module, correlating with chlorophyll and dominated by e.g., Flavobacteriales and Rhodobacteraceae, and an 'oligotrophic' module dominated by diverse Oceanospirillales (such as uncultured JL-ETNP-Y6, SAR86) and Pelagibacterales. Phylogenetic reconstructions of Pelagibacterales and SAR324 using full-length 16S rRNA gene data revealed several additional subclades, expanding known microdiversity within these abundant lineages, including new Pelagibacterales subclades Ia.B, Id, and IIc, which comprised 4-10% of amplicons depending on the subclade and depth zone. SAR324 and Oceanospirillales dominated in the mesopelagic, with SAR324 clade II exhibiting its highest relative abundances (17±4%) in the lower mesopelagic (300-750 m). The two newly-identified SAR324 clades showed highest relative abundances in the photic zone (clade III), while clade IV was extremely low in relative abundance, but present across dark ocean depths. Hierarchical clustering placed microbial communities from 900 m samples with those from the bathypelagic, where Marinimicrobia was distinctively relatively abundant. The patterns resolved herein, through high resolution and statistical replication, establish baselines for marine bacterial abundance and taxonomic distributions across the Monterey Bay water column, against which future change can be assessed.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Água , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética , Oceanos e Mares , Alphaproteobacteria/genética , Gammaproteobacteria/genética , Água do Mar/microbiologia
2.
PLoS One ; 19(4): e0300758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557976

RESUMO

Ciliates are unicellular eukaryotes, regularly involved in symbiotic associations. Symbionts may colonize the inside of their cells as well as their surface as ectosymbionts. Here, we report on a new ciliate species, designated as Zoothamnium mariella sp. nov. (Peritrichia, Sessilida), discovered in the northern Adriatic Sea (Mediterranean Sea) in 2021. We found this ciliate species to be monospecifically associated with a new genus of ectosymbiotic bacteria, here proposed as Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov. To formally describe the new ciliate species, we investigated its morphology and sequenced its 18S rRNA gene. To demonstrate its association with a single species of bacterial ectosymbiont, we performed 16S rRNA gene sequencing, fluorescence in situ hybridization, and scanning electron microscopy. Additionally, we explored the two partners' cultivation requirements and ecology. Z. mariella sp. nov. was characterized by a colony length of up to 1 mm. A consistent number of either seven or eight long branches alternated on the stalk in close distance to each other. The colony developed three different types of zooids: microzooids ("trophic stage"), macrozooids ("telotroch stage"), and terminal zooids ("dividing stage"). Viewed from inside the cell, the microzooids' oral ciliature ran in 1 » turns in a clockwise direction around the peristomial disc before entering the infundibulum, where it performed another ¾ turn. Phylogenetic analyses assigned Z. mariella sp. nov. to clade II of the family Zoothamnidae. The ectosymbiont formed a monophyletic clade within the Gammaproteobacteria along with two other ectosymbionts of peritrichous ciliates and a free-living vent bacterium. It colonized the entire surface of its ciliate host, except for the most basal stalk of large colonies, and exhibited a single, spindle-shaped morphotype. Furthermore, the two partners together appear to be generalists of temperate, oxic, marine shallow-water environments and were collectively cultivable in steady flow-through systems.


Assuntos
Cilióforos , Gammaproteobacteria , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S/genética , Cilióforos/genética , Gammaproteobacteria/genética , Análise de Sequência de DNA , DNA Bacteriano
3.
Microbiologyopen ; 13(2): e1405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481089

RESUMO

Ascidians, known for their color variation, host species-specific microbial symbiont communities. Some ascidians can also transition into a nonfiltering (resting) physiological state. Recent studies suggest that the microbial symbiont communities may vary across different physiological states and color morphs of the host. The colonial ascidian, Polyclinum constellatum, which exhibits several color morphs in the Caribbean Sea, periodically ceases its filtering activity. To investigate if color variation in P. constellatum is indicative of sibling speciation, we sequenced fragments of the ribosomal 18S rRNA and the mitochondrial cytochrome oxidase subunit I genes. Additionally, we sequenced a fragment of the 16S rRNA gene to characterize the microbial communities of two common color morphs (red and green) in colonies that were either actively filtering (active) or nonfiltering (resting). Phylogenetic analyses of both ascidian genes resulted in well-supported monophyletic clades encompassing all color variants of P. constellatum. Interestingly, no significant differences were observed among the microbial communities of the green and red morphs, suggesting that color variation in this species is a result of intraspecific variation. However, the host's physiological state significantly influenced the microbial community structure. Nonfiltering (resting) colonies hosted higher relative abundances of Kiloniella (Alphaproteobacteria) and Fangia (Gammaproteobacteria), while filtering colonies hosted more Reugeria (Alphaproteobacteria) and Endozoicomonas (Gammaproteobacteria). This study demonstrates that microbial symbiont communities serve as reliable indicators of the taxonomic state of their host and are strongly influenced by the host's feeding condition.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Microbiota , Urocordados , Animais , Urocordados/genética , Urocordados/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Microbiota/genética , Gammaproteobacteria/genética , Alphaproteobacteria/genética
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38519099

RESUMO

The intricate evolutionary dynamics of endosymbiotic relationships result in unique characteristics among the genomes of symbionts, which profoundly influence host insect phenotypes. Here, we investigated an endosymbiotic system in Phenacoccus solenopsis, a notorious pest of the subfamily Phenacoccinae. The endosymbiont, "Candidatus Tremblaya phenacola" (T. phenacola PSOL), persisted throughout the complete life cycle of female hosts and was more active during oviposition, whereas there was a significant decline in abundance after pupation in males. Genome sequencing yielded an endosymbiont genome of 221.1 kb in size, comprising seven contigs and originating from a chimeric arrangement between betaproteobacteria and gammaproteobacteria. A comprehensive analysis of amino acid metabolic pathways demonstrated complementarity between the host and endosymbiont metabolism. Elimination of T. phenacola PSOL through antibiotic treatment significantly decreased P. solenopsis fecundity. Weighted gene coexpression network analysis demonstrated a correlation between genes associated with essential amino acid synthesis and those associated with host meiosis and oocyte maturation. Moreover, altering endosymbiont abundance activated the host mechanistic target of rapamycin pathway, suggesting that changes in the amino acid abundance affected the host reproductive capabilities via this signal pathway. Taken together, these findings demonstrate a mechanism by which the endosymbiont T. phenacola PSOL contributed to high fecundity in P. solenopsis and provide new insights into nutritional compensation and coevolution of the endosymbiotic system.


Assuntos
Betaproteobacteria , Gammaproteobacteria , Hemípteros , Animais , Masculino , Feminino , Sirolimo/metabolismo , Betaproteobacteria/genética , Gammaproteobacteria/genética , Hemípteros/microbiologia , Reprodução , Aminoácidos/metabolismo , Simbiose
5.
Appl Environ Microbiol ; 90(4): e0209923, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445905

RESUMO

Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribed nod genes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria, rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribe nod, but at lower relative abundance than UBA11136 in the upper ODZ. The nod-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here named ptd) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.IMPORTANCEIn marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world's largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribe nod at lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Óxido Nítrico/metabolismo , Bactérias/genética , Oxigênio/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Citocromos/metabolismo , Nitrogênio/metabolismo , Porinas/metabolismo , Oxirredução , Água do Mar/microbiologia , Desnitrificação
6.
Environ Microbiol Rep ; 16(2): e13236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444282

RESUMO

Corals engage in symbioses with micro-organisms that provide nutrients and protect the host. Where the prokaryotic microbes perform their symbiotic functions within a coral is, however, poorly understood. Here, we studied the tissue-specific microbiota of the coral Corallium rubrum by dissecting its tissues from the skeleton and separating the white polyps from the red-coloured coenenchyme, followed by 16S rRNA gene metabarcoding of the three fractions. Dissection was facilitated by incubating coral fragments in RNAlater, which caused tissues to detach from the skeleton. Our results show compartmentalisation of the microbiota. Specifically, Endozoicomonas, Parcubacteria and a Gammaproteobacteria were primarily located in polyps, whereas Nitrincolaceae and one Spirochaeta phylotype were found mainly in the coenenchyme. The skeleton-associated microbiota was distinct from the microbiota in the tissues. Given the difference in tissue colour and microbiota of the polyps and coenenchyme, we analysed the microbiota of three colormorphs of C. rubrum (red, pink, white), finding that the main difference was a very low abundance of Spirochaeta in white colormorphs. While the functions of C. rubrum's symbionts are unknown, their localisation within the colony suggests that microhabitats exist, and the presence of Spirochaeta appears to be linked to the colour of C. rubrum.


Assuntos
Antozoários , Gammaproteobacteria , Animais , RNA Ribossômico 16S/genética , Bactérias/genética , Células Procarióticas , Gammaproteobacteria/genética
7.
J Hazard Mater ; 469: 133904, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422739

RESUMO

The consumption of cycloalkanes is prevalent in low-temperature marine environments, likely influenced by psychrophilic microorganisms. Despite their significance, the primary active species responsible for marine cycloalkane degradation remain largely unidentified due to cultivation challenges. In this study, we provide compelling evidence indicating that the uncultured genus C1-B045 of Gammaproteobacteria is a pivotal participant in cycloalkane decomposition within China's marginal seas. Notably, the relative abundance of C1-B045 surged from 15.9% in the methylcyclohexane (MCH)-consuming starter culture to as high as 97.5% in MCH-utilizing extinction cultures following successive dilution-to-extinction and incubation cycles. We used stable isotope probing, Raman-activated gravity-driven encapsulation, and 16 S rRNA gene sequencing to link cycloalkane-metabolizing phenotype to genotype at the single-cell level. By annotating key enzymes (e.g., alkane monooxygenase, cyclohexanone monooxygenase, and 6-hexanolactone hydrolase) involved in MCH metabolism within C1-B045's representative metagenome-assembled genome, we developed a putative MCH degradation pathway.


Assuntos
Cicloparafinas , Gammaproteobacteria , Humanos , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Metagenoma , China
8.
Curr Biol ; 34(8): 1621-1634.e9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38377997

RESUMO

Timing the acquisition of a beneficial microbe relative to the evolutionary history of its host can shed light on the adaptive impact of a partnership. Here, we investigated the onset and molecular evolution of an obligate symbiosis between Cassidinae leaf beetles and Candidatus Stammera capleta, a γ-proteobacterium. Residing extracellularly within foregut symbiotic organs, Stammera upgrades the digestive physiology of its host by supplementing plant cell wall-degrading enzymes. We observe that Stammera is a shared symbiont across tortoise and hispine beetles that collectively comprise the Cassidinae subfamily, despite differences in their folivorous habits. In contrast to its transcriptional profile during vertical transmission, Stammera elevates the expression of genes encoding digestive enzymes while in the foregut symbiotic organs, matching the nutritional requirements of its host. Despite the widespread distribution of Stammera across Cassidinae beetles, symbiont acquisition during the Paleocene (∼62 mya) did not coincide with the origin of the subfamily. Early diverging lineages lack the symbiont and the specialized organs that house it. Reconstructing the ancestral state of host-beneficial factors revealed that Stammera encoded three digestive enzymes at the onset of symbiosis, including polygalacturonase-a pectinase that is universally shared. Although non-symbiotic cassidines encode polygalacturonase endogenously, their repertoire of plant cell wall-degrading enzymes is more limited compared with symbiotic beetles supplemented with digestive enzymes from Stammera. Highlighting the potential impact of a symbiotic condition and an upgraded metabolic potential, Stammera-harboring beetles exploit a greater variety of plants and are more speciose compared with non-symbiotic members of the Cassidinae.


Assuntos
Besouros , Simbiose , Animais , Besouros/fisiologia , Besouros/microbiologia , Besouros/genética , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Evolução Biológica , Evolução Molecular
9.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365239

RESUMO

Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments. CAMAs were found in both adults and larval offspring, suggesting vertical transmission. In situ laser capture microdissection of CAMAs followed by 16S rRNA gene amplicon sequencing and shotgun metagenomics produced a near complete metagenome-assembled genome. We subsequently cultured the CAMA bacteria from Pocillopora acuta colonies, and sequenced and assembled their genomes. Phylogenetic analyses showed that the CAMA bacteria belong to an undescribed Endozoicomonadaceae genus and species, which we propose to name Candidatus Sororendozoicomonas aggregata gen. nov sp. nov. Metabolic pathway reconstruction from its genome sequence suggests this species can synthesize most amino acids, several B vitamins, and antioxidants, and participate in carbon cycling and prey digestion, which may be beneficial to its coral hosts. This study provides detailed insights into a new member of the widespread Endozoicomonadaceae family, thereby improving our understanding of coral holobiont functioning. Vertically transmitted, tissue-associated bacteria, such as Sororendozoicomonas aggregata may be key candidates for the development of microbiome manipulation approaches with long-term positive effects on the coral host.


Assuntos
Antozoários , Gammaproteobacteria , Animais , Antozoários/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética , Metagenoma , Gammaproteobacteria/genética , Recifes de Corais , Simbiose
10.
BMC Microbiol ; 24(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172653

RESUMO

The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiotics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it from both a clinical and a genomic perspective.


Assuntos
Dípteros , Gammaproteobacteria , Animais , Humanos , Gammaproteobacteria/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Dípteros/microbiologia , Genômica , Larva
11.
Crit Rev Microbiol ; 50(1): 105-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634159

RESUMO

Integrative Conjugative Elements (ICEs) are mosaics containing functional modules allowing maintenance by site-specific integration and excision into and from the host genome and conjugative transfer to a specific host range. Many ICEs encode a range of adaptive functions that aid bacterial survival and evolution in a range of niches. ICEs from the SXT/R391 family are found in γ-Proteobacteria. Over 100 members have undergone epidemiological and molecular characterization allowing insight into their diversity and function. Comparative analysis of SXT/R391 elements from a wide geographic distribution has revealed conservation of key functions, and the accumulation and evolution of adaptive genes. This evolution is associated with gene acquisition in conserved hotspots and variable regions within the SXT/R391 ICEs catalysed via element-encoded recombinases. The elements can carry IS elements and transposons, and a mutagenic DNA polymerase, PolV, which are associated with their evolution. SXT/R391 ICEs isolated from different niches appear to have retained adaptive functions related to that specific niche; phage resistance determinants in ICEs carried by wastewater bacteria, antibiotic resistance determinants in clinical isolates and metal resistance determinants in bacteria recovered from polluted environments/ocean sediments. Many genes found in the element hotspots are undetermined and have few homologs in the nucleotide databases.


Assuntos
Gammaproteobacteria , Gammaproteobacteria/genética , Elementos de DNA Transponíveis , Conjugação Genética , Antibacterianos
12.
Sci Total Environ ; 912: 169134, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070563

RESUMO

In this study, we present the genome characterization of a novel chitin-degrading strain, KSP-S5-2, and comparative genomics of 33 strains of Cellvibrionaceae. Strain KSP-S5-2 was isolated from mangrove sediment collected in Balik Pulau, Penang, Malaysia, and its 16S rRNA gene sequence showed the highest similarity (95.09%) to Teredinibacter franksiae. Genome-wide analyses including 16S rRNA gene sequence similarity, average nucleotide identity, digital DNA-DNA hybridization, and phylogenomics, suggested that KSP-S5-2 represents a novel species in the family Cellvibrionaceae. The Cellvibrionaceae pan-genome exhibited high genomic variability, with only 1.7% representing the core genome, while the flexible genome showed a notable enrichment of genes related to carbohydrate metabolism and transport pathway. This observation sheds light on the genetic plasticity of the Cellvibrionaceae family and the gene pools that form the basis for the evolution of polysaccharide-degrading capabilities. Comparative analysis of the carbohydrate-active enzymes across Cellvibrionaceae strains revealed that the chitinolytic system is not universally present within the family, as only 18 of the 33 genomes encoded chitinases. Strain KSP-S5-2 displayed an expanded repertoire of chitinolytic enzymes (25 GH18, two GH19 chitinases, and five GH20 ß-N-acetylhexosaminidases) but lacked genes for agar, xylan, and pectin degradation, indicating specialized enzymatic machinery focused primarily on chitin degradation. Further, the strain degraded 90% of chitin after 10 days of incubation. In summary, our findings provided insights into strain KSP-S5-2's genomic potential, the genetics of its chitinolytic system, genomic diversity within the Cellvibrionaceae family in terms of polysaccharide degradation, and its application for chitin degradation.


Assuntos
Quitinases , Gammaproteobacteria , Quitina/metabolismo , RNA Ribossômico 16S , Estudo de Associação Genômica Ampla , Bactérias/metabolismo , Genômica , Gammaproteobacteria/genética , Metabolismo dos Carboidratos , Quitinases/genética , Quitinases/metabolismo , DNA
13.
World J Microbiol Biotechnol ; 40(2): 52, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146029

RESUMO

Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.


Assuntos
Betaproteobacteria , Gammaproteobacteria , Microbiota , Humanos , Gammaproteobacteria/genética , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Estações do Ano , Bactérias/metabolismo , Microbiota/genética , Compostos Orgânicos/metabolismo
14.
Curr Microbiol ; 81(1): 12, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989899

RESUMO

In the twenty-first century, antibiotic resistance (ABR) is one of the acute medical emergencies around the globe, overwhelming human-animal-environmental interfaces. Hit-or-mis use of antibiotics exacerbates the crisis of ABR, dispersing transferable resistance traits and challenging treatment regimens based on life-saving drugs such as colistin. Colistin is the highest priority critically important antimicrobials for human medicine, but its long use as a growth promoter in animal husbandry reduces clinical efficacy. Since 2015, the emergence and spread of mobile colistin resistance (mcr)-carrying colistin-resistant clones of Enterobacterales have been markedly sustained in both humans and animals, especially in developing countries. Hospital and community transmissions of mcr clones pose a high risk for infection prevention and outbreaks at the national and international levels. Several public health and limited one health studies have highlighted the genomic insights of mcr clones, clarifying the chromosomal sequence types (STs) and plasmid incompatibility (Inc) types. But this information is segregated into humans and animals, and rarely are environmental sectors complicating the understanding of possibly intercontinental and sectoral transmission of these clones. India is the hotspot for superbugs, including mcr-carrying colistin-resistant isolates that threaten cross-border transmission. The current review provided an up-to-date worldwide scenario of mcr-carrying STs and plasmid Inc types among the Gram-negative bacilli of Enterobacterales across human-animal-environmental interfaces and correlated with the available information from India.


Assuntos
Proteínas de Escherichia coli , Gammaproteobacteria , Animais , Humanos , Colistina/farmacologia , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Gammaproteobacteria/genética , Plasmídeos , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética
15.
Microbiome ; 11(1): 239, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925458

RESUMO

BACKGROUND: Heterotrophic microbes inhabiting the dark ocean largely depend on the settling of organic matter from the sunlit ocean. However, this sinking of organic materials is insufficient to cover their demand for energy and alternative sources such as chemoautotrophy have been proposed. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. METHODS: Seawater samples were collected from Labrador Sea Water (LSW, ~ 2000 m depth) in the North Atlantic and incubated in the dark at in situ temperature unamended, amended with 1 µM thiosulfate, or with 1 µM thiosulfate plus 10 µM glucose and 10 µM acetate (thiosulfate plus dissolved organic matter, DOM). Inorganic carbon fixation was measured in the different treatments and samples for metatranscriptomic analyses were collected after 1 h and 72 h of incubation. RESULTS: Amendment of LSW with thiosulfate and thiosulfate plus DOM enhanced prokaryotic inorganic carbon fixation. The energy generated via chemoautotrophy and heterotrophy in the amended prokaryotic communities was used for the biosynthesis of glycogen and phospholipids as storage molecules. The addition of thiosulfate stimulated unclassified bacteria, sulfur-oxidizing Deltaproteobacteria (SAR324 cluster bacteria), Epsilonproteobacteria (Sulfurimonas sp.), and Gammaproteobacteria (SUP05 cluster bacteria), whereas, the amendment with thiosulfate plus DOM stimulated typically copiotrophic Gammaproteobacteria (closely related to Vibrio sp. and Pseudoalteromonas sp.). CONCLUSIONS: The gene expression pattern of thiosulfate utilizing microbes specifically of genes involved in energy production via sulfur oxidation and coupled to CO2 fixation pathways coincided with the change in the transcriptional profile of the heterotrophic prokaryotic community (genes involved in promoting energy storage), suggesting a fine-tuned metabolic interplay between chemoautotrophic and heterotrophic microbes in the dark ocean. Video Abstract.


Assuntos
Gammaproteobacteria , Tiossulfatos , Processos Heterotróficos , Tiossulfatos/metabolismo , Carbono/metabolismo , Gammaproteobacteria/genética , Enxofre/metabolismo , Ciclo do Carbono
16.
Int J Biol Macromol ; 253(Pt 2): 126738, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690648

RESUMO

Taxa of Buchnera aphidicola (hereafter "Buchnera") are mutualistic intracellular symbionts of aphids, known for their remarkable biological traits such as genome reduction, strand compositional asymmetry, and symbiont-host coevolution. With the growing availability of genomic data, we performed a comprehensive analysis of 103 genomes of Buchnera strains from 12 host subfamilies, focusing on the genomic characterizations, codon usage patterns, and phylogenetic implications. Our findings revealed consistent features among all genomes, including small genome sizes, low GC contents, and gene losses. We also identified strong strand compositional asymmetries in all strains at the genome level. Further investigation suggested that mutation pressure may have played a crucial role in shaping codon usage of Buchnera. Moreover, the genomic asymmetries were reflected in asymmetric codon usage preferences within chromosomal genes. Notably, the levels of these asymmetries were varied among strains and were significantly influenced by the degrees of genome shrinkages. Lastly, our phylogenetic analyses presented an alternative topology of Aphididae, based on the Buchnera symbionts, providing robust confirmation of the paraphylies of Eriosomatinae, and Macrosiphini. Our objectives are to further understand the strand compositional asymmetry and codon usage bias of Buchnera taxa, and provide new perspectives for phylogenetic studies of Aphididae.


Assuntos
Buchnera , Gammaproteobacteria , Filogenia , Buchnera/genética , Uso do Códon , Gammaproteobacteria/genética , Evolução Molecular , Simbiose/genética
17.
mSystems ; 8(5): e0070623, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750682

RESUMO

IMPORTANCE: Insects that live exclusively on vertebrate blood utilize symbiotic bacteria as a source of essential compounds, e.g., B vitamins. In louse flies, the most frequent symbiont originated in genus Arsenophonus, known from a wide range of insects. Here, we analyze genomic traits, phylogenetic origins, and metabolic capacities of 11 Arsenophonus strains associated with louse flies. We show that in louse flies, Arsenophonus established symbiosis in at least four independent events, reaching different stages of symbiogenesis. This allowed for comparative genomic analysis, including convergence of metabolic capacities. The significance of the results is twofold. First, based on a comparison of independently originated Arsenophonus symbioses, it determines the importance of individual B vitamins for the insect host. This expands our theoretical insight into insect-bacteria symbiosis. The second outcome is of methodological significance. We show that the comparative approach reveals artifacts that would be difficult to identify based on a single-genome analysis.


Assuntos
Anoplura , Dípteros , Gammaproteobacteria , Complexo Vitamínico B , Animais , Dípteros/microbiologia , Filogenia , Enterobacteriaceae , Simbiose , Gammaproteobacteria/genética , Insetos , Bactérias
18.
Environ Microbiol ; 25(12): 2958-2971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37599091

RESUMO

Cycloalkanes are abundant and toxic compounds in subsurface petroleum reservoirs and their fate is important to ecosystems impacted by natural oil seeps and spills. This study focuses on the microbial metabolism of methylcyclohexane (MCH) and methylcyclopentane (MCP) in the deep Gulf of Mexico. MCH and MCP are often abundant cycloalkanes observed in petroleum and will dissolve into the water column when introduced at the seafloor via a spill or natural seep. We conducted incubations with deep Gulf of Mexico (GOM) seawater amended with MCH and MCP at four stations. Within incubations with active respiration of MCH and MCP, we found that a novel genus of bacteria belonging to the Porticoccaceae family (Candidatus Reddybacter) dominated the microbial community. Using metagenome-assembled genomes, we reconstructed the central metabolism of Candidatus Reddybacter, identifying a novel clade of the particulate hydrocarbon monooxygenase (pmo) that may play a central role in MCH and MCP metabolism. Through comparative analysis of 174 genomes, we parsed the taxonomy of the Porticoccaceae family and found evidence suggesting the acquisition of pmo and other genes related to the degradation of cyclic and branched hydrophobic compounds were likely key events in the ecology and evolution of this group of organisms.


Assuntos
Cicloparafinas , Gammaproteobacteria , Microbiota , Poluição por Petróleo , Petróleo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Água do Mar/microbiologia , Gammaproteobacteria/genética , Petróleo/metabolismo , Golfo do México , Biodegradação Ambiental
19.
Microbes Environ ; 38(3)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37612118

RESUMO

Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.


Assuntos
Gammaproteobacteria , Hemípteros , Animais , RNA Ribossômico 16S/genética , Genes de RNAr , Bactérias/genética , Enterobacteriaceae/genética , Gammaproteobacteria/genética
20.
Mikrochim Acta ; 190(9): 360, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606732

RESUMO

Carbapenem-resistant Enterobacterales pose significant global health challenges due to their rapid spread and ability to hydrolyse various beta-lactam antibiotics. Rapid tests for these carbapenemase genes are crucial to ensure appropriate prescription administration and infection control. In this study, we developed a rapid visual nanodiagnostic platform for multiplexed detection of carbapenemase genes using a lateral flow strip. The nanodiagnostic strip was designed with separate barcoded DNA tetrahedrons for the blaKPC and blaNDM genes. These tetrahedrons were distributed on a nitrocellulose membrane at two different test lines as capture probes. When tested against a panel of carbapenemase genes, the tetrahedral probes captured single-stranded amplicons of asymmetric PCR via strand hybridisation. The amplicons acted as bridging elements, binding the DNA-modified gold nanoparticles to the test line of the strip, resulting in clear visual readouts specific to the blaKPC and blaNDM genes. By employing barcoded tetrahedrons and asymmetric PCR in conjunction with the lateral flow strip, a single diagnostic test enabled the detection of multiple carbapenemase genes. The test yielded results as low as 0.12 fM for blaKPC and 0.05 fM for blaNDM within 75 min. Furthermore, the strip effectively identified specific carbapenemase genes in clinical isolates using real-time PCR, antibody-based lateral flow systems for carbapenemase detection, and carbapenemase phenotype experiments. Thus, the strip develop has a high potential for testing blaKPC and blaNDM genes in practice.


Assuntos
Técnicas Biossensoriais , Farmacorresistência Bacteriana , Técnicas Genéticas , Carbapenêmicos/farmacologia , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/genética , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...